General description

The RDR regulators are easily installed inside ducts for ventilation or airconditionning, whether it is used for supply or exhaust purposes. RDR dampers assure a constant airflow volume within a pressure range of 50 up to 200 Pa . For higher pressure, we refer to our RDR-HP. Thanks to an easy setting mode (with screw), you can set different airflow levels (see table).

Technical description

- Made of fire retardant plastic, classified M1
- Color: black
- Stainless steel calibrated spring
- Rubber sealing for airtightness
- Maximum temperature: $60^{\circ} \mathrm{C}$
- Airflow levels marked for easy setting

Dimensions

	A(mm)	$\mathbf{B}(\mathbf{m m})$	$\mathbf{C}(\mathbf{m m})$
RDR 80	76	76	57
RDR 100	96	93	68

	A (mm)	B (mm)	L (mm)
RDR 125	120	117	86
RDR 150	148	148	85
RDR 160	148	148	85
RDR 200	190	195	91
RDR 250	244	245	120

Applications

- To be inserted inside round ducts, for horizontal and vertical mounting
- To be mounted according to the airflow direction and BAS/DOWN marking
- By air supply: to be placed at a minimum distance of $3 x$ the duct diameter from airsupply grills and at the same distance close to areas with high turbulence like duct connection, bends,..
- By air exhaust: to be placed at a minimum distance of $1 x$ the duct diameter from airsupply grilles and at the same distance close to areas with high turbulence like duct connection, bends,..

T-7094 _ RDR

Technical specification

RDR	Setting	Flow ($\mathrm{m}^{3} / \mathrm{h}$)	Set flow ($\mathrm{m}^{3} / \mathrm{h}$)
Diam. 80	RDR diam. 80	15 to 50	50
Diam. 100	RDR diam. 80 + 1 reducing ring	15 to 50	50
Diam. 100	RDR diam. 100	50 to 100	100
Diam. 125	RDR diam. $80+2$ reducing rings	15 to 50	50
Diam. 125	RDR diam. $100+1$ reducing ring	50 to 100	100
Diam. 125	RDR diam. 125	100 to 180	180
Diam. 150	RDR diam. $80+3$ reducing rings	15 to 50	50
Diam. 150	RDR diam. $100+2$ reducing rings	50 to 100	100
Diam. 150	RDR diam. $125+1$ reducing ring	100 to 180	180
Diam. 150	RDR diam. 150	180 to 300	300
Diam. 160	RDR diam. $80+3$ reducing rings	15 to 50	50
Diam. 160	RDR diam. $100+2$ reducing rings	50 to 100	100
Diam. 160	RDR diam. $125+1$ reducing ring	100 to 180	180
Diam. 160	RDR diam. 150	180 to 300	300
Diam. 200	RDR diam. $80+4$ reducing rings	15 to 50	50
Diam. 200	RDR diam. $100+3$ reducing rings	50 to 100	100
Diam. 200	RDR diam. $125+2$ reducing rings	100 to 180	180
Diam. 200	RDR diam. $160+1$ reducing ring	180 to 300	300
Diam. 200	RDR diam. 200	300 to 500	500
Diam. 250	RDR diam. $100+4$ reducing rings	50 to 100	100
Diam. 250	RDR diam. $125+3$ reducing rings	100 to 180	180
Diam. 250	RDR diam. $160+2$ reducing rings	180 to 300	300
Diam. 250	RDR diam. $200+1$ reducing ring	300 to 500	500
Diam. 250	RDR diam. 250	450 to 750	700

Débit $\mathbf{(m 3 / h})$	Lw en dB(A)			
	$\mathbf{5 0} \mathbf{~ P a}$	$\mathbf{1 0 0} \mathbf{P a}$	$\mathbf{1 5 0} \mathbf{~ P a}$	$\mathbf{2 0 0} \mathbf{~ P a}$
15	25	29	32	35
30	26	31	35	38
45	27	33	36	39
60	32	37	39	42
75	32	37	40	42
90	32	38	41	44
120	30	34	39	42
150	33	37	41	45
180	34	40	44	47
210	34	40	42	44
240	35	41	44	47
270	37	43	45	49
300	33	37	42	45
350	35	40	44	47
400	37	42	45	50
450	38	44	46	51
500	39	46	48	53

